
DEVELOPMENT OF EPICS BASED BEAM-LINE EXPERIMENTAL
CONTROL EMPLOYING MOTOR CONTROLLER FOR PRECISION

POSITIONING

Anupriya Tuli1, Rajiv Jain2, H S Vora2

1. Amity School of Engineering and Technology, Amity University Noida UP.
2. Raja Ramanna Centre for Advanced Technology, Indore, MP

ABSTRACT

In a Synchrotron Radiation Source the beamline
experiments are carried out in radiation prone environment,
inside the hutch, which demands to conduct experiments
remotely. These experiments involve instrument control
and data acquisition from various devices. Another factor
which attributes to system complexity is precise positioning
of sample and placement of detectors due to inherent small
beam size. A large number of stepper motors are engaged
for achieving the required precision positioning.

This work is a result of development of Experimental
Physics and Industrial Control System (EPICS) based
control system to interface a stepper motor controller
developed indigenously by Laser Electronics Support
Division of RRCAT. EPICS is an internationally accepted
open source software environment which follows toolkit
approach and standard model paradigm. The operator
interface for the control system software was implemented
using CSS BOY. The system was successfully tested for
Ethernet based remote access. The developed control
software comprises of an OPI and alarm handler (EPICS
ALH). Both OPI and ALH are linked with PV's defined in
database files. The development process resulted into a set
of EPICS based commands for controlling stepper motor.
These commands are independent of operator interface, i.e.
stepper motor can be controlled by using these set of
commands directly on EPICS prompt. This command set is
illustrated in the above table. EPICS Alarm Handler was
also tested independently by running these commands on
EPIC prompt. If not using ALH, operator can read the
alarm status of a PV using 'SEVR' and 'STAT' attributes.

INTRODUCTION

In a particle accelerators stepper motors are used in
beamline experiments to achieve high precision positioning
of sample or detector mounted on it according to the need
of the experiment.

A multi-axis stepper motor controller was developed by
LESD, RRCAT for such applications. Owing indigenously
development, its driver for EPICS were not available. It
was necessary to absorb this motor controller in beamline
experiments in a standard interface. The EPICS software
environment used to develop and implement distributed
control systems for experimental control. It provides
Supervisory Control and Data Acquisition (SCADA)
capabilities. It is a distributed process control system build
on software communication bus. EPICS includes a set of
functional sub systems (Display manager, Alarm manager,
Achiever, Sequencer, Application program in C and
Channel Access Protocol) which work in collaboration to
provide total functionality of a control system. The EPICS

is not only a software toolkit, it is also collaboration and
control system architecture. It supports client/Server
architecture, enabling the design and development of the
systems which include large number of networked nodes
providing control and feedback [10]. This paper presents the
development of control system software using EPICS to
interface indigenously developed stepper motor controller.

Control System Architecture

The beamline experiments involve a large number of
detectors, controllers, and various test & measurement
equipment from multiple vendors applying heterogeneous
technology. All these devices and equipment are controlled
using control system software and hardware. Clout [1]

attributes time scale associated with accelerators and varied
complexity of diagnostic equipment as the reason for
difficulty in controlling the accelerators.

Singh [2] describe that software architecture plays a
defining role in development of control system software.
His work highlights the flexibility of multilayer software
architecture in accommodating integration of new
equipment/machines in exiting design state of accelerator
control system.

Operating System for Control System

Development and deployment of any application system
highly depends on the operating system. Chepurnov [3]

developed an industrial style control system, which uses
Linux as operating system for developing and running
application. On the basis of their experience they propose
Linux as operating system for both middle layer and
presentation layer of control system architecture. In an
article, Nichols [4] describes the role of Scientific Linux at
CERN. The vision behind Scientific Linux was to provide a
customizable operating system platform which meets the
requirements of high energy physics experiments.

Software Tools for Developing Control System

While developing control system, a plethora of SCADA
packages are available in market to choose from. These
packages are either commercially available or are open
source. In his work, Singh [2] states that though industrial
SCADA is an available choice for developing control
systems, it is not suitable for developing accelerator control
system software. The author mentions EPICS SCADA
being a popular choice among accelerator community for
developing control systems.

Barana [5], presented a comparison between four control
system development software packages, two being
commercial (FTV-SE and PVSS II) and remaining two
were open- source (EPICS R3.14.10 and TANGO). These
packages were tested against SCADA capabilities and ease

of system development. Observations revealed that though
FTV-SE provides an ease in system development, windows
is the only choice available in terms of compatible
operating systems. Also, it requires an intermediate layer
when communicating with a third party device. On other
hand TANGO do not provides ease in system development,
but support rich tools and multiple object oriented
languages (Python, Java & C++). On comparing PVSS
with EPICS, prior will be given preference when it comes
to communication, because EPICS require a number of
scripts to be configured for establishing communication.
On other hand EPICS is open source and showed better
network performance.

White [6] shows the transition in accelerator control
system development. In last fifteen years more than 100
projects throughout the world were successful in building
control systems using EPICS due to fact that high degree of
software reusability supported by toolkit approaches and
SCADA approaches results in decrement of development
time and cost.

Experimental Physics and Industrial Control
System (EPICS)

Dalesio [7, 8] defines EPICS as a software environment
which follows the toolkit approach of developing control
systems. It is also an architecture and collaboration
between accelerator labs and industry. EPICS follows
‘standard model’ paradigm i.e. EPICS applies standards at
every layer to achieve increased performance and balance
between cost/performance tradeoff. He further defines the
architecture of EPICS which includes a set of sub systems
(application programs in C, alarm handler, display
manager, achiever and sequencer). EPICS based control
system is based on communication between these
subsystems (software).

There are various Operator Interface (OPI) tools
available in market for the development of each EPICS
subsystem. Farnsworth [9] compared different OPI
development tools (MEDM, EDM, CSS BOY, EPICSQt,
CAQtDM and AS-Delphi) for acceleration control. For
performing analysis, a database of 500 records was used,
which updated from 0 to 99 with a speed of 10 times per
second. These tools were tested against two conditions; one
when OPI would skip the update and other is the situation
of complete failure of OPI (halt state).The analysis was
carried for windows & Linux and for both text & graphical
widgets. The result showed that CSS BOY (Control System
Studio, Best OPI Yet) which is a Java based tool performed
better than EPICSQt which is a C/C++ based tool.

CONFIGURING HARDWARE DEVICES

The stepper motor controller used for this project is
developed in-house by LESD group, RRCAT. It is a multi
axis stepper motor controller without encoder. The
controller can either be connected on RS-232 or USB. This
is made possible as the controller has basic RS-232
interface, enhanced to work on USB using FTDI controller.
Thus it can be is configured and mounted as a serial device
by Linux machine even while using USB. For the basic

Motorized Translation Stage, MTS 6565 from M/s
Holmarc Opto-Mechatronics, Kochi has been used as
positioning device with stepper motor controller. The
specifications of both the devices are summarized in
table 1.

Table 1 : Hardware Device Specifications

SOFTWARE DEVELOPMENT

The approach followed to build the control system
includes the major steps involved in a software
development cycle. These steps are illustrated using
flowchart in figure 1.

Figure 1: Steps involved in control development

Architecture Design

EPICS is a toolkit of subsystems, which work
collaboratively to provide functionality of a control system.

As per requirement an operator is provided with an
integrated access to the set of selected sub systems, where
each subsystem performs different task for controlling the
remote device.

The distributed multilayer software architecture is used
for building this control system. In accordance with the
requirement specification, a basic alarm handling system
has also been incorporated. The figure 2 illustrates the
architecture design followed in this project.

Database Designing and Record Support

Designing of database is most crucial phase of the
approach as backend of control system software is made up
of collection of distributed databases. These databases
define Process Variables (PV’s) associated with interfacing
device.

Successful communication with stepper motor controller
was established by attaching asyn Record to it. This record
type facilitates the generic communication to a device
having GPIB, serial or Ethernet port. The database was
designed around asyn Record and its communication with
group of other record types like analog input, string input
and string calculation output.

Figure 2: Architecture for Control

OPI and Alarm Handler

There are various OPI tools available in market. Studies
reveal that CSS BOY, a Java based OPI development tool
has better performance over C/C++ based OPI development
tools. Thus the frontend for the system was designed and
developed using CSS BOY. Though CSS provides its own
alarm handling system, we chose EPICS ALH for the
project. Though ALH is MEDM based, it serves as the best
fit for the projects with very basic alarm handling
requirements.

RESULT

The developed control software comprises of an OPI and
alarm handler (EPICS ALH). Both OPI and ALH are linked
with PV's defined in database files. Figure 3 shows the
captured screenshot of the developed control system
software.

Figure 3: Stepper motor control system software

EPICS prompt command set

The development process resulted into a set of EPICS
based commands for controlling stepper motor. These
commands are independent of operator interface, i.e.
stepper motor can be controlled by using these set of
commands directly on EPICS prompt. This command set is
illustrated in table 2.

EPICS Alarm Handler was also tested independently by
running these commands on EPICS prompt. If not using
ALH, operator can read the alarm status of a PV using
'SEVR' and 'STAT' attributes.

Software Test Results

The software was tested to control movement of single
stage motor attached to stepper motor controller. The
following results were observed while testing the software,

The software requires minimum CPU utilization.
The software was tested for baud rate 9600 and 19200.
Software also supports EPICS Alarm Handling system.
EPICS Alarm Handling system successfully generated
alarms even when tested directly on EPICS prompt
using EPICS prompt command set.

Ethernet based remote access was successfully.

SUMMARY

This work is a result of development of control system
software for a stepper motor controller. This software will
be used to assist beamline experiments at Indus-2, RRCAT.
Indigenously developed motor controller was used for
interfacing successfully with EPICS under Linux
environment.

The asyn Record was used to establish communication
with the controller. The system’s operator interface was
developed using CSS BOY, whereas EPICS ALH performs
the alarm handling. This development process also resulted
into an OPI independent EPICS prompt command set. This
command set independently serves the purpose of stepper
motor controller including alarm handling.

Table 2: EPICS prompt command set for the given stepper motor controller

ACKNOWLEDGEMENT

The development work for was carried out RRCAT, Indore,
India. The first author wishes to express her gratitude
towards Mr. C.P. Navathe, Head, LESD and authorities of
RRCAT for giving opportunity to work at RRCAT and co-
operation received from all quarters.

REFERENCES

[1] P. Clout et al., "Distributed Computers in Accelerator
Control Systems," Distributed Computer Control Systems,
pp. 135-141, 1986.
[2] S. Singh et al., "Particle accelerator Control System,"
Proceedings of the DAE Symposium on Nuclear Physics
55, p. 118, 2010.
[3] A.S. Chepurnov, et. al., "Operating System Linux as
developing and runtime platform for control system of
particle accelerator," in Proceeding of EPAC 2000, 2000.
[4] S. J. Vaughan-Nichols, "High-Energy Linux: Linux &
the Large Hadron Collider," December 2009.
[5] Barana O., et. al., “Comparison between commercial
and open-source SCADA packages -A case study," vol. 85,
pp. 491-495.
[6] K. S. White, "Status and future developments in large
accelerator control systems," in Proceedings of ICAP 2006,
France, 2006.
[7] L.R. Dalesio, et. al., "The experimental physics and
industrial control system architecture: Past, present, and
future," Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment, vol. 352, no. 1-2, p. 179, 1994.
[8] L. R. Dalesio, "EPICS Architecture," ICALEPS, pp.
278-281, 1991.

[9] Farnsworth, et. al., "Experimental Physics and
Industrial Control System," Aragonne National Laboratory,
Feb'2015. http://www.aps.anl.gov/epics/
[10] "Experimental Physics and Industrial Control
System," Aragonne National Laboratory, Feb'2015.
http://www.aps.anl.gov/epics/

